2-OXOOXAZOLOPYRIDINES.

2.* SYNTHESIS OF N'-ALKYL-N-(2-OXO-3-PYRIDYL)UREAS

D. Shantare, M. Yure, É. Gudrinietse, and T. Malinovskaya

In reactions with amines 2-oxo-7-trifluoromethyl-5-phenyl-(1H)-oxazolo[5, 4-b]pyridines and alkyl N-(2-oxo-3-pyridyl)carbamates are converted into N'-alkyl- and N,N'-dialkyl-N-(2-oxo-3-pyridyl)ureas respectively.

N'-Alkyl-N-(2-oxo-3-pyridyl)ureas and their properties and biological activity have been little studied [2-4]. 3-Pyridylureas are obtained in the reactions of pyridyl isocyanates [2, 5, 6], pyridyl azides [7], pyridylhydroxamic acids [8], and 2-oxooxazolo[5,4-b]pyridines [1, 9, 10] with amines.

It seemed to us expedient to study in greater detail the possibility of synthesizing 3-pyridylureas containing the CF_3 group in the molecule, for it extends the range of the biological activity of pyridine derivatives [11, 12]. While continuing the research in [1], we reacted 2-oxo-(1H)-oxazolo[5,4-b]pyridine (I) with ammonia, primary alkyl- and arylamines, aminoalcohols, and compounds containing a secondary amino group. In these reactions all the amino derivatives open the oxazolone ring with the formation of the corresponding 2-oxo-3-pyridylureas (IIa-r). Here, with the amines having the highest basicity (isobutylamine, allylamine, etc.) the reaction takes place even at room temperature, but the yields of the corresponding ureas do not exceed 36%. By heating it is possible to increase the yields to 93%. With weaker amines, such as p- or m-nitroanilines and 2,5-diaminopyridine, it was not possible to obtain the respective ureas, while with ammonia the reaction only took place under pressure.

The 3-pyridylureas (IId-g, i, k-n) were also obtained by heating 3-pyridyl carbamate (III) [13] with the respective amines.

B: = Et_2NH , Ph_2NH , morpholine Et_3N

1-Methyl-2-oxooxazolo[5,4-b]pyridine (IV) [13] and the carbamates (Va-c) [1] react with amines like the oxooxazole (I) and the carbamate (III). Thus, the same trisubstituted urea (VIa) was obtained when the oxooxazole (IV) and the 3-pyridyl carbamate (Va) [1] were heated with benzylamine.

^{*}For Communication 1, see [1].

Riga Technical University, Riga LV-1048, Latvia. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 385-391, March, 1998. Original article submitted July 3, 1998.

Yield, % (method) 36,0 83,3 (B) 75,2 86.6 (A) 81,3 (A),3 (B) 86,5 (A) 2 J...2800, 1642, I 3310, 3000...2800, 1660, 1634, 1578 3312, 3100...2860, 1642, 1630, 1578 3280, IR spectrum, cm⁻¹ 3460, 33 3260, 29 1654, 16 1598, 1524 = 3324, 3200... 1653, 1585 3298, 3200... 1660, 0,89 (3H, m, CH₃): 1,39 (4H,m, 2CH₂); 3,08 (2H,m, CH₂); 6,50...6,89 (2H, m, NH, 5-H); 7,50 (3H, m, Ph); 7,64...7,94 (3H, m, Ph, NH); 12,40 (1H, NH) 2,61 (3H,d, CH₃); 6,58 (2H, m, NH, 5-H); 7,47 (3H, m, Ph); 7,61...7,92 (3H,m, Ph, NH); 12,42 (1H, NH) 1,11 (6H, d, CH₃); 3,74 (1H, m, CH); 6,61 (2H, m, NH, S-H); 7,51 (3H, m, Ph); 7,76 (3H, m, Ph); 11,84 (1H, NH) 6,19 (2H, S, NH₂); 6,67 (1H, S, 5-H); 7,49 (3H, m, Ph); 7,64... 7,96 (3H, m, Ph, NH); 12,42 (1H, NH) δ. ppm, DMSO-d₆ PMR spectrum, 9 228...230 263...264 258...260 254...255 264...265 ပွ mp, $\frac{13,20}{13,33}$ $\frac{12.92}{12.70}$ $\frac{12,53}{12,38}$ $\frac{11,51}{11,89}$ 11,64 z 1% Found % Calculated 5,10 5,13 4,87 5,13 3,80 3,82 4,79 Ŧ 7 49,66 49,53 54.02 53,78 <u>57,66</u> 57,79 <u>56,78</u> 56,64 <u>57,57</u> 57,79 O DMFA – ethanol (3:10) Solvent for re-crystal-lization Ethanol DMFA Ethanol DMFA-ethanol (3:10) 2 C13H10F3N3O2. H2O Empirical formula C14H12F3N3O2 $C_{16}H_{16}F_3N_3O_2$ C17H18F3N3O2 C17H18F3N3O2 $^{\rm L}$ I Ξ I Ξ Ξ CH₂CH(CH₃)₂ ~ ~ (CH₂)₃CH₃ CH(CH₃)₂ CH_3 Ξ punod Com-119 IIe Ha 띪 PI

352

TABLE 1. Characteristics of Compounds (IIa-r)

TABI	TABLE 1 (continued)										
-	2	3	4	5	9	7	*	6	10	=	12
III	CH ₂ CH-CH ₂	Ξ	C ₁₆ H ₁₄ F ₃ N ₃ O ₂	DMFA	<u>56,87</u> 56,97	4,16	12,43 12,46	240242	3.75 (2H, m, CH ₂); 4,945,39 (2H, m, CH ₂); 5,586,06 (1H, m, CH); 6,64 (1H, m, CH); 1, NH); 7.50 (3H, m, Ph);	3300, 31802860, 1661, 1653, 1579	93,3 (A), 34,0 (A*),
IIg	(CH ₂) ₄ CH ₃	E	C ₁₈ H ₂₀ F ₃ N ₃ O ₂	DMFA	58,54 58,85	5,41 5,49	11,24	246247	7,648,01 (3H, m, Ph, NH); 11,68 (1H, NH) 0,611,64 (9H, t, CH ₃ , m, (CH ₂) ₃); 2,97 (2H, m, CH ₂); 6,506,89 (2H, m, NH, 5-H); 7,50 (3H, m, Ph);	3308, 2960, 2920, 1659, 1641, 1579	(B) 78,3 (B)
II	Сн2Сн2Он	H	C ₁₅ H ₁₄ F ₃ N ₃ O ₃	DMFA	52,48 52,79	4,06	12,23 12,31	243244	7,647,94 (3H,m, Ph, NH); 12,44 (1H, NH) 3,17 (2H, m, CH ₂); 3,42 (2H, m, CH ₂); 4,71 (1H, t, OH); 6,69 (1H, s, 5-H); 6,83 (1H, t, NH); 7,54 (3H, m, Ph); 7,81 (2H, m, Ph); 7,99	3302, 31802840, 1660, 1642, 1584	80,9 (A)
ij	СН2СН(ОН)СН3	н	C ₁₆ H ₁₆ F ₃ N ₃ O ₃	Ethanol	53,89 54,09	4,58 4,54	11,67	235236		3312, 31802840, 1660, 1645,	56,3 (A), 82,4 (B)
iii	С(СН ₃) ₂ СН ₂ ОН	щ	C ₁₇ H ₁₈ F ₃ N ₃ O ₃	Dioxane	55,25 55,28	<u>5,24</u> 4,91	11,45	237238		3326, 3274, 30262860, 1686, 1650, 1546	72,2 (A)

TABI	TABLE 1 (continued)										
-	2	3	4	S	٥	7	8	6	10	=	12
IX	(СН ₂)2СН(ОН)СН ₃	н	C ₁₇ H ₁₈ F ₃ N ₃ O ₃	Ethanol	55,01 55,28	4,91	11,16	227722	1,08 (3H,d, CH ₃); 1,50 (2H, q, CH ₂); 3,14 (2H,q, CH ₂); 3,69 (1H,m, CH); 4,47 (1H, d, OH); 6,536,86 (2H,m, NH, 5-H); 7,50 (3H,m, Ph);	3462, 3306, 31802800, 1657, 1643, 1678	74.8 (A), 80,9 (B)
111	CH ₂ CH(0H)Ph	I	C ₂₁ H ₁₈ F ₃ N ₃ O ₃	Dioxane	60,02 60,43	4,38	9,80 10,07	260262		3552, 3304, 31002862, 1657, 1645, 1577	(A). (B).1
E.I.	CH ₂ Ph	I	C ₂₀ H ₁₆ F ₃ N ₃ O ₂	DMFA	62,01	4,16	10,85	255257		3300, 31002800, 1655, 1641, 1557	74,3 (A), 62,5 (B)
II	Ph.	Ξ	C ₁₉ H ₁₄ F ₃ N ₃ O ₂	DMFA	60,87	3,78	11,05	280282		ej	(A), (A), (B) 38
IIo	1-Naphthyl	π	C23H16F3N3O2	DMAA	64,92 65,25	3,81	9,59 9,92	290291	NH); 12,58 (1H, NH) 6,78 (1H, s, 5-H); 7,148,36 (12H, m, Ph, naphthyl); 8,56 (1H, s, NH); (1H, NH)	3270, 2926, 1668, 1642, 1560	(A)

17	54,5 (A)	75,4 (A)	90,2 (A)
=	3074, 1660, 1630,	3362, 3282, 75,4 32002800, (A) 1692, 1678,	2926, 1614,
	3266, 2906, 1646, 1566	3362, 3200 1692, 1630, 1	3186, 1674, 1578
10	6,72 (1H, s, 5-H); 7,227,94 (11H, m, Ph, naphthyl NH); 8,06 (2H, m, Ph); 9,33 (1H, s, NH); 12,56	(1H, NH) 170172 1,08 (6H, t, 2CH ₃); 3,31 3; (4H, q, 2CH ₂); 6,71 (1H, s, 3; 5-H); 7,50 (4H, m, Ph, NH); 1 (7,8)	209211 3.004,83 (8H, m, 4CH ₂); 6.76 (1H, s, 5-H); 7,53 (3H, m, Ph); 7,87 (2H, m, Ph); 8,01 (1H, s, NH); 12,47 (1H, NH)
6	288289	170172	209211
80	9,64	11,89	11,21
7	3,81 3,81	<u>5,29</u> 5,13	4,25 4,39
9	65,02 65,25	<u>57,53</u> 57,79	<u>55,56</u> 55,87
\$	DMAA	Ethanol	Ethanol
			•
•	C23H16F3N3O2	C ₁₇ H ₁₈ F ₃ N ₃ O ₂	C ₁₇ H ₁₆ F ₃ N ₃ O ₃
3	五	ឆ្ម	
2	IIp 2-Naphthyl	ឆ	(CH2CH2)20
-	IIp	IIq	i

TABLE 1 (continued)

*The reaction was conducted at -20°C for 5 h.

TABLE 2. Characteristics of Compounds (VIa-c)

Yield, %			64,7		80,4			81,8	
	IR spectrum, cm ⁻¹ Yield, %		3306, 31302800,	1646, 1618, 1532	3332,	31002800,	1662, 1646, 1534	3328,	30902840, 1632, 1564, 1530
	PMR spectrum, ô, ppm, deuterochloroform		230232 *3,00 (3H, \$, CH ₃); 4,22 (2H, d, CH ₃); 6,85 (2H, 3306, 5-H, NH); 7,25 (5H, \$, Ph); 7,53 (3H,m, Ph); 7,83 3130.	(2H, m, Ph); 12,55 (1H, NH)	0,641,78 (9H, t, CH ₃ ; m, (CH ₂) ₃); 2,923,28	(5H, m, CH ₂ , CH ₃); 4,31 (1H, NH); 6,78 (1H, s,	5-H); 7,44 (3H, m, Ph); 8,03 (2H, m, Ph); 13,14 1662, 1646, 1534 (1H, NH)	4,204,69 (4H, m, 2CH ₂); 5,78 (1H, NH); 6,62	7,64 (2H, m, Ph); 12,16 (1H, NH)
	mp, °C				205207	_		130132	
اء	Calculated %	z	10,45 10,47		11,10			9	
Found %		×	4,55 4,52		5,73	5,81		4.71	4,04
, , ,		ပ	62,63 62,84		59.65	59,84		67.94	76'/0
Empirical formula			C21H18F3N3O2		$(CH_2)_4CH_3 \mid C_{19}H_{22}F_3N_3O_2$			C27H22F3N3O2	
œ			Vla* CH ₃ CH ₂ Ph		(CH ₂) ₄ CH ₃		СН2Рћ		
	R		СН3	СН3		CH ₂ Ph CH ₂ Ph			
Com - pound			VIa*		VIb			VIc	

*The PMR spectrum of compound (VIa) was recorded in DMSO-d₆.

 $V \ a \ R^1 - Me, \ R^2 - Me, \ b \ R^1 - Me, \ R^2 - (CH_2)_2 CHMe_2, \ c \ R^1 - CH_2 Ph, \ R^2 - Et;$ $VI \ a \ R^1 - Me, \ R - CH_2 Ph, \ b \ R^1 - Me, \ R - (CH_2)_4 Me, \ c \ R^1 - CH_2 Ph, \ R - CH_2 Ph$

The reactions of the ureas (II, VI) and the carbamates (III, V) with amines are reversible. For example, the oxooxazoles (I, IV) respectively were obtained when the 3-pyridyl carbamates (III) [13] and (Va) [1] were heated with diethylamine, diphenylamine, or morpholine. The oxooxazole (I) was also obtained when the urea (IIb) was heated with triethylamine in dimethylacetamide (DMAA).

Thus, from the 2-oxooxazolopyridines (I, IV) and the carbamates (III, V) it was possible to obtain various ureas [derivatives of 4-trifluoromethyl-6-phenyl-2(1H)-pyridone] (Tables 1 and 2).

EXPERIMENTAL

The PMR spectra were recorded in DMSO-d₆ and deuterochloroform on a Bruker WH-90-DS spectrometer at 90 MHz with TMS as internal standard. The IR spectra were recorded on a Specord 71A instrument in paraffin oil (1800-1500 cm⁻¹) and hexachlorobutadiene (3600-2000 cm⁻¹). The individuality of the compounds was checked by TLC on Silufol UV-254 plates. The yields, melting points, solvents for recrystallization, elemental analyses, and PMR and IR spectra of compounds (IIa-r, VIa) are given in Tables 1 and 2.

2-Oxo-4-trifluoromethyl-(6-phenyl-3-pyridyl)urea (IIa) ($C_{13}H_{10}F_3N_3O_2\cdot H_2O$). A mixture of 0.14 g (0.50 mmole) of the oxooxazole (I) and 0.08 g (1.00 mmole) of ammonium carbonate was heated in an autoclave at 150°C for 2 h. The mixture was cooled, washed with water, and recrystallized from ethanol. We obtained 0.10 g (75.2%) of colorless crystals of compound (IIa).

N'-Substituted N-(2-Oxo-4-trifluoromethyl-6-phenyl-3-pyridyl)ureas (IIb-r). A. A solution of 0.20 g (0.72 mmole) of the oxooxazole (I) and 0.94 mmole of the respective amine in 20 ml of dioxane was heated at 95-100°C for 1.5 h for (IIb-e, h, l, o, p), 2 h for (IIf, i, m), 3 h for (IIk, n, r), 4 h for (IIj), and 6 h for (IIq). The ureas (IIb-r) were obtained. The ureas (IId, f) were also obtained with yields of 36 and 34% respectively by keeping the initial compounds at room temperature for 5 h in ethanol.

B. The pyridylureas (IId-g, m) were obtained by boiling 0.12 g (0.37 mmole) of the carbamate (III) and 5 ml of the respective amine [in the case of (IIf, m) 3 ml of DMAA was added] for 1 h for (IIm), 2 h for (IIg), and 3 h for (IId-f). The excess of the amine was distilled. The precipitate was recrystallized. The ureas (IIi-l, n) were also obtained by heating a solution of the carbamate (III) and 0.74 mmole of the respective amine in 5 ml of dioxane at 95-100°C for 1.5 h for (IIn), 3 h for (IIi, k, l), and 5 h for (IIj).

The compounds obtained by methods A and B did not give a melting point depression.

N'-Benzyl-N-methyl-N-(2-oxo-4-trifluoromethyl-6-phenyl-3-pyridyl)urea (VIa). A solution of 0.10 g (0.30 mmole) of the oxooxazolopyridine (IV) and 0.05 ml (0.40 mmole) of benzylamine in 10 ml of dioxane was heated at 95-100°C for 6 h. The precipitate was recrystallized from ethanol. We obtained 0.09 g (64.7%) of colorless crystals of compound (VIa).

N,N'-Dialkyl-N-(2-oxo-4-trifluoromethyl-6-phenyl-3-pyridyl)ureas (VIa-c). A solution of 0.20 g of the carbamate (Va-c) and 1 ml of the respective amine in 3 ml of DMAA was boiled. The mixture was cooled and diluted with water, and hydrochloric acid was added to pH 6-7. The precipitate was recrystallized from ethanol.

Reaction of the Carbamates (III, Va) and Urea (IIb) with Bases. A solution of 0.61 mmole of the carbamate (III) or (Va) and 0.72 mmole of triethylamine (diethylamine, diphenylamine, morpholine) in 5 ml of DMAA was boiled for 1 h.

The mixture was cooled, and dilute hydrochloric acid was added. The precipitate was recrystallized from ethanol. The yields of the oxooxazoles were 82.4-94.1% for (I) and 79.1-87.8% for (IV). Compound (I) was also obtained by heating the carbamate (III) and 0.72 mmole of diethylamine in 5 ml of dioxane at 95-100°C for 2 h. The yield was 87.4%. A solution of 0.64 mmole of the urea (IIb) and 0.77 mmole of triethylamine in 5 ml of DMAA was boiled for 3 h. The mixture was cooled, and dilute hydrochloric acid was added. The precipitate was recrystallized from ethanol. The yield of the oxooxazole (I) was 91.5%. The obtained compounds did not give a melting point depression with the authentic compounds [9, 13].

REFERENCES

- 1. D. Shantare, M. Yure, S. Belyakov, M. Petrova, and É. Gudrinietse, Khim. Geterotsikl. Soedin., No. 2, 241 (1997).
- 2. G. N. Vassilev and N. N. Nicolov, Dokl. Bolg. Akad. Nauk, 33, 1127 (1980).
- 3. I. T. Forbes, P. Ham, D. H. Booth, R. T. Martin, M. Thompson, G. T. Baxter, T. P. Blackburn, A. Glen, G. A. Kennett, and M. D. Wood, J. Med. Chem., 38, 2524 (1995).
- 4. J. E. Audia, D. A. Evrard, G. R. Murdoch, J. J. Droste, J. S. Nissen, K. W. Schenk, P. Fludzinski, V. L. Lucaites, D. L. Nelson, and M. L. Cohen, J. Med. Chem., 39, 2773 (1996).
- 5. L. V. Sudha and D. N. Sathyanarayana, J. Mol. Struct., No. 131, 141 (1985).
- 6. L. S. Peshakova and V. B. Kalcheva, Dokl. Bolg. Akad. Nauk, 41, 39 (1988).
- 7. B. Stanovnik, M. Tišler, V. Golob, I. Hvala, and O. Nikolič, J. Heterocycl. Chem., 17, 733 (1980).
- 8. Z. Eckstein, E. Lipezynska-Kochany, and J. Krzeminski, Heterocycles, 20, No. 10, 1899 (1993).
- 9. É. Gudrinietse, M. Yure, P. Pastors, A. Karklinya, and É. Palitis, Khim. Geterotsikl. Soedin., No. 2, 271 (1995).
- 10. Ch. Flouzat, M. Blanchet, and G. Guillaumet, Tetrahedron Lett., 33, 4571 (1992).
- 11. R. Fillar, Organofluorine Chemicals and Their Industrial Applications, R. E. Bank (ed.), Ellis Horwood, London (1979), p. 123.
- 12. K. Burger, D. Hubl, and K. Geth, Synthesis, 194 (1988).
- 13. M. V. Yure, D. V. Shantare, and É. Yu. Gudrinietse, Khim. Geterotsikl. Soedin., No. 4, 542 (1996).